High Order Regularity for Conservation Laws
نویسندگان
چکیده
We study the regularity of discontinuous entropy solutions to scalar hyperbolic conservation laws with uniformly convex fluxes posed as initial value problems on R. For positive α we show that if the initial data has bounded variation and the flux is smooth enough then the solution u( · , t) is in the Besov space Bα σ (L σ) where σ = 1/(α + 1) whenever the initial data is in this space. As a corollary, we show that discontinuous solutions of conservation laws have enough regularity to be approximated well by moving-grid finite element methods. Techniques from approximation theory are the basis for our analysis.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملA total variation diminishing high resolution scheme for nonlinear conservation laws
In this paper we propose a novel high resolution scheme for scalar nonlinear hyperbolic conservation laws. The aim of high resolution schemes is to provide at least second order accuracy in smooth regions and produce sharp solutions near the discontinuities. We prove that the proposed scheme that is derived by utilizing an appropriate flux limiter is nonlinear stable in the sense of total varia...
متن کاملSome regularizing methods for transport equations and the regularity of solutions to scalar conservation laws
We study several regularizing methods, stationary phase or averaging lemmas for instance. Depending on the regularity assumptions that are made, we show that they can either be derived one from the other or that they lead to different results. Those are applied to Scalar Conservation Laws to precise and better explain the regularity of their solutions.
متن کاملEntropy and the numerical integration of conservation laws
In this paper, we review recent results on the role of entropy in the numerical integration of conservation laws. It is well known that weak solutions of systems of conservation laws may not be unique. Physically relevant weak solutions possess a viscous profile and satisfy entropy inequalities. In the discrete case entropy inequalities are used as a tool to prove convergence to entropy dissipa...
متن کاملRegularity through Approximation for Scalar Conservation Laws∗
In this paper it is shown that recent approximation results for scalar conservation laws in one space dimension imply that solutions of these equations with smooth, convex fluxes have more regularity than previously believed. Regularity is measured in spaces determined by quasinorms related to the solution’s approximation properties in L1(R) by discontinuous, piecewise linear functions. Using a...
متن کامل